\documentclass{ian} \usepackage{largearray} \begin{document} \hbox{} \hfil{\bf\LARGE {\tt nstrophy} } \vfill \tableofcontents \vfill \eject \setcounter{page}1 \pagestyle{plain} \section{Description of the computation} \subsection{Irreversible equation} \indent Consider the {\it irreversible} Navier-Stokes equation in 2 dimensions \begin{equation} \partial_tu=\nu\Delta u+g-\nabla w-(u\cdot\nabla)u,\quad \nabla\cdot u=0 \label{ins} \end{equation} in which $g$ is the forcing term and $w$ is the pressure. We take periodic boundary conditions, so, at every given time, $u(t,\cdot)$ is a function on the unit torus $\mathbb T^2:=\mathbb R^2/\mathbb Z^2$. We represent $u(t,\cdot)$ using its Fourier series \begin{equation} \hat u_k(t):=\int_{\mathbb T^2}dx\ e^{2i\pi kx}u(t,x) \end{equation} for $k\in\mathbb Z^2$, and rewrite~\-(\ref{ins}) as \begin{equation} \partial_t\hat u_k= -4\pi^2\nu k^2\hat u_k+\hat g_k-2i\pi k\hat w_k -2i\pi\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} (q\cdot\hat u_p)\hat u_q ,\quad k\cdot\hat u_k=0 \label{ins_k} \end{equation} We then reduce the equation to a scalar one, by writing \begin{equation} \hat u_k=\frac{2i\pi k^\perp}{|k|}\hat\varphi_k\equiv\frac{2i\pi}{|k|}(-k_y\hat\varphi_k,k_x\hat\varphi_k) \end{equation} in terms of which, multiplying both sides of the equation by $\frac{k^\perp}{|k|}$, \begin{equation} \partial_t\hat \varphi_k= -4\pi^2\nu k^2\hat \varphi_k+\frac{k^\perp}{2i\pi|k|}\cdot\hat g_k +\frac{4\pi^2}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} \frac{(q\cdot p^\perp)(k^\perp\cdot q^\perp)}{|q||p|}\hat\varphi_p\hat\varphi_q . \label{ins_k} \end{equation} Furthermore \begin{equation} (q\cdot p^\perp)(k^\perp\cdot q^\perp) = (q\cdot p^\perp)(q^2+p\cdot q) \end{equation} and $q\cdot p^\perp$ is antisymmetric under exchange of $q$ and $p$. Therefore, \begin{equation} \partial_t\hat \varphi_k= -4\pi^2\nu k^2\hat \varphi_k+\frac{k^\perp}{2i\pi|k|}\cdot\hat g_k +\frac{4\pi^2}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} \frac{(q\cdot p^\perp)|q|}{|p|}\hat\varphi_p\hat\varphi_q . \label{ins_k} \end{equation} We truncate the Fourier modes and assume that $\hat\varphi_k=0$ if $|k_1|>K_1$ or $|k_2|>K_2$. Let \begin{equation} \mathcal K:=\{(k_1,k_2),\ |k_1|\leqslant K_1,\ |k_2|\leqslant K_2\} . \end{equation} \bigskip \point{\bf FFT}. We compute the last term in~\-(\ref{ins_k}) \begin{equation} T(\hat\varphi,k):= \sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} \frac{(q\cdot p^\perp)|q|}{|p|}\hat\varphi_q\hat\varphi_p \end{equation} using a fast Fourier transform, defined as \begin{equation} \mathcal F(f)(n):=\sum_{m\in\mathcal N}e^{-\frac{2i\pi}{N_1}m_1n_1-\frac{2i\pi}{N_2}m_2n_2}f(m_1,m_2) \end{equation} where \begin{equation} \mathcal N:=\{(n_1,n_2),\ 0\leqslant n_1< N_1,\ 0\leqslant n_2< N_2\} \end{equation} for some fixed $N_1,N_2$. The transform is inverted by \begin{equation} \frac1{N_1N_2}\mathcal F^*(\mathcal F(f))(n)=f(n) \end{equation} in which $\mathcal F^*$ is defined like $\mathcal F$ but with the opposite phase. \bigskip \indent The condition $p+q=k$ can be rewritten as \begin{equation} T(\hat\varphi,k) = \sum_{p,q\in\mathcal K} \frac1{N_1N_2} \sum_{n\in\mathcal N}e^{-\frac{2i\pi}{N_1}n_1(p_1+q_1-k_1)-\frac{2i\pi}{N_2}n_2(p_2+q_2-k_2)} (q\cdot p^\perp)\frac{|q|}{|p|}\hat\varphi_q\hat\varphi_p \end{equation} provided \begin{equation} N_i>4K_i. \end{equation} Indeed, $\sum_{n_i=0}^{N_i}e^{-\frac{2i\pi}{N_i}n_im_i}$ vanishes unless $m_i=0\%N_i$ (in which $\%N_i$ means `modulo $N_i$'), and, if $p,q\in\mathcal K$, then $|p_i+q_i|\leqslant2K_i$. Therefore, \begin{equation} T(\hat\varphi,k) = \textstyle \frac1{N_1N_2} \mathcal F^*\left( \mathcal F\left(\frac{p_x\hat\varphi_p}{|p|}\right)(n) \mathcal F\left(q_y|q|\hat\varphi_q\right)(n) - \mathcal F\left(\frac{p_y\hat\varphi_p}{|p|}\right)(n) \mathcal F\left(q_x|q|\hat\varphi_q\right)(n) \right)(k) \end{equation} \vfill \eject \begin{thebibliography}{WWW99} \small \IfFileExists{bibliography/bibliography.tex}{\input bibliography/bibliography.tex}{} \end{thebibliography} \end{document}