From d58123d7cc0b61179b21ecfa0bb9d712c562e5d8 Mon Sep 17 00:00:00 2001 From: Ian Jauslin Date: Thu, 19 May 2022 19:04:30 +0200 Subject: Energy ineuqalities in doc --- docs/nstrophy_doc/nstrophy_doc.tex | 111 ++++++++++++++++++++++++++++++++++++- 1 file changed, 110 insertions(+), 1 deletion(-) (limited to 'docs') diff --git a/docs/nstrophy_doc/nstrophy_doc.tex b/docs/nstrophy_doc/nstrophy_doc.tex index 0e058f9..abc8f48 100644 --- a/docs/nstrophy_doc/nstrophy_doc.tex +++ b/docs/nstrophy_doc/nstrophy_doc.tex @@ -125,7 +125,117 @@ Therefore, \mathcal F\left(q_x|q|\hat\varphi_q\right)(n) \right)(k) \end{equation} +\bigskip +\point{\bf Energy}. +We define the energy as +\begin{equation} + E(t)=\frac12\int dx\ u^2(t,x)=\frac12\sum_{k\in\mathbb Z^2}|\hat u_k|^2 + . +\end{equation} +We have +\begin{equation} + \partial_t E=\int dx\ u\partial tu + = + \nu\int dx\ u\Delta u + +\int dx\ ug + -\int dx\ u(u\cdot\nabla)u + . +\end{equation} +Since we have periodic boundary conditions, +\begin{equation} + \int dx\ u\Delta u=-\int dx\ |\nabla u|^2 + . +\end{equation} +Furthermore, +\begin{equation} + I:=\int dx\ u(u\cdot\nabla)u + =\sum_{i,j=1,2}\int dx\ u_iu_j\partial_ju_i + = + -\sum_{i,j=1,2}\int dx\ (\partial_ju_i)u_ju_i + -\sum_{i,j=1,2}\int dx\ u_i(\partial_ju_j)u_i +\end{equation} +and since $\nabla\cdot u=0$, +\begin{equation} + I + = + -I +\end{equation} +and so $I=0$. +Thus, +\begin{equation} + \partial_t E= + \int dx\ \left(-\nu|\nabla u|^2+ug\right) + = + \sum_{k\in\mathbb Z^2}\left(-4\pi^2\nu k^2|\hat u_k|^2+\hat u_{-k}\hat g_k\right) + . +\end{equation} +Furthermore, +\begin{equation} + \sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2\geqslant + \sum_{k\in\mathbb Z^2}|\hat u_k|^2-|\hat u_0|^2 + =2E-|\hat u_0|^2 +\end{equation} +so +\begin{equation} + \partial_t E\leqslant -8\pi^2\nu E+4\pi^2\nu\hat u_0^2+\sum_{k\in\mathbb Z^2}\hat u_{-k}\hat g_k + \leqslant + -8\pi^2\nu E+4\pi^2\nu\hat u_0^2+ + \|\hat g\|_2\sqrt{2E} + . +\end{equation} +In particular, if $\hat u_0=0$ (which corresponds to keeping the center of mass fixed), +\begin{equation} + \partial_t E\leqslant -8\pi^2\nu E+\|\hat g\|_2\sqrt{2E} + . +\end{equation} +Now, if $8\pi^2\nu\sqrt E<\sqrt2\|\hat g\|_2$, then +\begin{equation} + \frac{\partial_t E}{-8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}}\leqslant1 +\end{equation} +and so +\begin{equation} + \frac{\log(1-\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(t)})}{-4\pi^2\nu}\leqslant t+ + \frac{\log(1-\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(0)})}{-4\pi^2\nu} +\end{equation} +and +\begin{equation} + E(t) + \leqslant + \left( + \frac{\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-4\pi^2\nu t}) + +e^{-4\pi^2\nu t}\sqrt{E(0)} + \right)^2 + . +\end{equation} +If $8\pi^2\nu\sqrt E>\sqrt2\|\hat g\|_2$, +\begin{equation} + \frac{\partial_t E}{-8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}}\geqslant1 +\end{equation} +and so +\begin{equation} + \frac{\log(\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(t)}-1)}{-4\pi^2\nu}\geqslant t+ + \frac{\log(\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(0)})-1}{-4\pi^2\nu} +\end{equation} +and +\begin{equation} + E(t) + \leqslant + \left( + \frac{\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-4\pi^2\nu t}) + +e^{-4\pi^2\nu t}\sqrt{E(0)} + \right)^2 + . +\end{equation} +\bigskip + +\point{\bf Enstrophy}. +The enstrophy is defined as +\begin{equation} + \mathcal En(t)=\int dx\ |\nabla u|^2 + =4\pi^2\sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2 + . +\end{equation} \vfill \eject @@ -135,5 +245,4 @@ Therefore, \IfFileExists{bibliography/bibliography.tex}{\input bibliography/bibliography.tex}{} \end{thebibliography} - \end{document} -- cgit v1.2.3-54-g00ecf