From cff1d2ee3c7730b672f239de5eb1aeb1a0bfd1db Mon Sep 17 00:00:00 2001 From: Ian Jauslin Date: Fri, 12 Jan 2018 19:20:59 +0000 Subject: Simpler expression for fft term --- docs/nstrophy_doc/nstrophy_doc.tex | 45 ++++++++++++++++---------------------- 1 file changed, 19 insertions(+), 26 deletions(-) (limited to 'docs') diff --git a/docs/nstrophy_doc/nstrophy_doc.tex b/docs/nstrophy_doc/nstrophy_doc.tex index fa5fff0..914b0b8 100644 --- a/docs/nstrophy_doc/nstrophy_doc.tex +++ b/docs/nstrophy_doc/nstrophy_doc.tex @@ -49,16 +49,23 @@ in terms of which, multiplying both sides of the equation by $\frac{k^\perp}{|k| \begin{equation} \partial_t\hat \varphi_k= -4\pi^2\nu k^2\hat \varphi_k+\frac{k^\perp}{2i\pi|k|}\cdot\hat g_k - -\frac{2i\pi}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} + +\frac{4\pi^2}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} (q\cdot p^\perp)(k^\perp\cdot q^\perp)\hat\varphi_p\hat\varphi_q + . \label{ins_k} \end{equation} -which, since $q\cdot p^\perp=q\cdot(k^\perp-q^\perp)=q\cdot k^\perp$, is +Furthermore +\begin{equation} + (q\cdot p^\perp)(k^\perp\cdot q^\perp) + = + (q\cdot p^\perp)(q^2+p\cdot q) +\end{equation} +and $q\cdot p^\perp$ is antisymmetric under exchange of $q$ and $p$. Therefore, \begin{equation} \partial_t\hat \varphi_k= -4\pi^2\nu k^2\hat \varphi_k+\frac{k^\perp}{2i\pi|k|}\cdot\hat g_k +\frac{4\pi^2}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} - (q\cdot k^\perp)(k\cdot q)\frac{\hat\varphi_p\hat\varphi_q}{|p||q|} + \frac{(q\cdot p^\perp)|q|}{|p|}\hat\varphi_p\hat\varphi_q . \label{ins_k} \end{equation} @@ -73,8 +80,7 @@ We truncate the Fourier modes and assume that $\hat\varphi_k=0$ if $|k_1|>K_1$ o \begin{equation} T(\hat\varphi,k):= \sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} - \frac{\hat\varphi_p}{|p|} - (q\cdot k^\perp)(k\cdot q)\frac{\hat\varphi_q}{|q|} + \frac{(q\cdot p^\perp)|q|}{|p|}\hat\varphi_q\hat\varphi_p \end{equation} using a fast Fourier transform, defined as \begin{equation} @@ -98,40 +104,27 @@ in which $\mathcal F^*$ is defined like $\mathcal F$ but with the opposite phase \sum_{p,q\in\mathcal K} \frac1{N_1N_2} \sum_{n\in\mathcal N}e^{-\frac{2i\pi}{N_1}n_1(p_1+q_1-k_1)-\frac{2i\pi}{N_2}n_2(p_2+q_2-k_2)} - \frac{\hat\varphi_p}{|p|} - (q\cdot k^\perp)(k\cdot q)\frac{\hat\varphi_q}{|q|} + (q\cdot p^\perp)\frac{|q|}{|p|}\hat\varphi_q\hat\varphi_p \end{equation} provided \begin{equation} N_i>4K_i. \end{equation} Indeed, $\sum_{n_i=0}^{N_i}e^{-\frac{2i\pi}{N_i}n_im_i}$ vanishes unless $m_i=0\%N_i$ (in which $\%N_i$ means `modulo $N_i$'), and, if $p,q\in\mathcal K$, then $|p_i+q_i|\leqslant2K_i$. Therefore, -\begin{equation} - T(\hat\varphi,k) - = - \frac1{N_1N_2} - \mathcal F^*\left( - \mathcal F(|p|^{-1}\hat\varphi_p)(n) - \mathcal F((|q|^{-1}(q\cdot k^\perp)(k\cdot q)\hat\varphi_q)_q)(n) - \right)(k) -\end{equation} -which we expand \begin{equation} T(\hat\varphi,k) = \textstyle - \frac{k_x^2-k_y^2}{N_1N_2} - \mathcal F^*\left( - \mathcal F\left(\frac{\hat\varphi_p}{|p|}\right)(n) - \mathcal F\left(\frac{q_xq_y}{|q|}\hat\varphi_q\right)(n) - \right)(k) - - - \frac{k_xk_y}{N_1N_2} + \frac1{N_1N_2} \mathcal F^*\left( - \mathcal F\left(\frac{\hat\varphi_p}{|p|}\right)(n) - \mathcal F\left(\frac{q_x^2-q_y^2}{|q|}\hat\varphi_q\right)(n) + \mathcal F\left(\frac{p_x\hat\varphi_p}{|p|}\right)(n) + \mathcal F\left(q_y|q|\hat\varphi_q\right)(n) + - + \mathcal F\left(\frac{p_y\hat\varphi_p}{|p|}\right)(n) + \mathcal F\left(q_x|q|\hat\varphi_q\right)(n) \right)(k) \end{equation} +\bigskip \vfill -- cgit v1.2.3-54-g00ecf