From 75de7e03b7b73cb45ce611368a023841e530a219 Mon Sep 17 00:00:00 2001 From: Ian Jauslin Date: Fri, 31 Mar 2023 16:58:52 -0400 Subject: Reality in doc --- docs/nstrophy_doc/nstrophy_doc.tex | 53 ++++++++++++++++++++++++++++---------- 1 file changed, 40 insertions(+), 13 deletions(-) diff --git a/docs/nstrophy_doc/nstrophy_doc.tex b/docs/nstrophy_doc/nstrophy_doc.tex index ae571ef..54e802e 100644 --- a/docs/nstrophy_doc/nstrophy_doc.tex +++ b/docs/nstrophy_doc/nstrophy_doc.tex @@ -71,10 +71,16 @@ and $q\cdot p^\perp$ is antisymmetric under exchange of $q$ and $p$. Therefore, \begin{equation} \partial_t\hat u_k= -\frac{4\pi^2}{L^2}\nu k^2\hat u_k+\hat g_k - +\frac{4\pi^2}{L^2|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} + +\frac{4\pi^2}{L^2|k|}T(\hat u,k) + \label{ins_k} +\end{equation} +with +\begin{equation} + T(\hat u,k):= + \sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} \frac{(q\cdot p^\perp)|q|}{|p|}\hat u_p\hat u_q . - \label{ins_k} + \label{T} \end{equation} We truncate the Fourier modes and assume that $\hat u_k=0$ if $|k_1|>K_1$ or $|k_2|>K_2$. Let \begin{equation} @@ -83,14 +89,30 @@ We truncate the Fourier modes and assume that $\hat u_k=0$ if $|k_1|>K_1$ or $|k \end{equation} \bigskip -\point{\bf FFT}. We compute the last term in~\-(\ref{ins_k}) +\point{\bf Reality}. +Since $U$ is real, $\hat U_{-k}=\hat U_k^*$, and so \begin{equation} - T(\hat u,k):= - \sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} - \frac{(q\cdot p^\perp)|q|}{|p|}\hat u_q\hat u_p - \label{T} + \hat u_{-k}=\hat u_k^* + . + \label{realu} \end{equation} -using a fast Fourier transform, defined as +Similarly, +\begin{equation} + \hat g_{-k}=\hat g_k^* + . + \label{realg} +\end{equation} +Thus, +\begin{equation} + T(\hat u,-k) + = + T(\hat u,k)^* + . + \label{realT} +\end{equation} +\bigskip + +\point{\bf FFT}. We compute T using a fast Fourier transform, defined as \begin{equation} \mathcal F(f)(n):=\sum_{m\in\mathcal N}e^{-\frac{2i\pi}{N_1}m_1n_1-\frac{2i\pi}{N_2}m_2n_2}f(m_1,m_2) \end{equation} @@ -279,20 +301,25 @@ To compute $\alpha$, we use the constancy of the enstrophy: \end{equation} which, in terms of $\hat u$ is \begin{equation} - \sum_{k\in\mathbb Z^2}k^2\hat u_k\partial_t\hat u_k + \sum_{k\in\mathbb Z^2}k^2\hat u_k^*\partial_t\hat u_k =0 \end{equation} that is \begin{equation} - \frac{4\pi^2}{L^2}\alpha(\hat u)\sum_{k\in\mathbb Z^2}k^4\hat u_k^2 + \frac{4\pi^2}{L^2}\alpha(\hat u)\sum_{k\in\mathbb Z^2}k^4|\hat u_k|^2 = - \sum_{k\in\mathbb Z^2}k^2\hat u_k\hat g_k - +\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}|k|\hat u_kT(\hat u,k) + \sum_{k\in\mathbb Z^2}k^2\hat u_k^*\hat g_k + +\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}|k|\hat u_k^*T(\hat u,k) \end{equation} and so \begin{equation} \alpha(\hat u) - =\frac{\frac{L^2}{4\pi^2}\sum_k k^2\hat u_k\hat g_k+\sum_k|k|\hat u_kT(\hat u,k)}{\sum_kk^4\hat u_k^2} + =\frac{\frac{L^2}{4\pi^2}\sum_k k^2\hat u_k^*\hat g_k+\sum_k|k|\hat u_k^*T(\hat u,k)}{\sum_kk^4|\hat u_k|^2} + . +\end{equation} +Note that, by\-~(\ref{realu})-(\ref{realT}), +\begin{equation} + \alpha(\hat u)\in\mathbb R . \end{equation} -- cgit v1.2.3-54-g00ecf