hhtop

v1.0

hhtop is a tool to compute, numerically, the following quantities for the Haldane-Hubbard

model:

e the one-loop renormalization of the topological phase diagram,

e the difference of the (a,a) and (b, b) wave-function renormalizations, at second order,
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1. Phase diagram

In this section we discuss the computation of the renormalization of the phase diagram.

1.1. Description of the computation
1.1.1. Definition of the problem

We wish to solve the following equation:

. ) 3v3 & My, w,o(K)
M, W, @) := W + 3v 3wt ——A | dk dk A& =0 1.1
,tl,tg,)\( ’ (b) + fw 2 Sll’l(]ﬁ + 1671'3 /B‘ /oo 0 Dtl,t%W,qﬁ(kOa k') ( )

for W € R, ¢ € (—m, 7], where the parameters w = £1, to > 0, t; > 3t2 and X € R are fixed. We
now define the quantities appearing in (1.1):

B::{<2;+k§,k2) eR? | |k2|<\2/7%\/§|k’1|}, (1.2)

o (ki k) = g + cos(V/3k2) + 2 cos (2@) cos (‘f@) : (1.3)

s (k1, k) := — sin(v/3ks) + 2 cos <;’k1> sin (?1@) , (1.4)

Q(ky, ko) := 1+ 2e~ 2% cos (\fl@) : (1.5)

may wo(k) := W — 2ty sin g (k) (1.6)
Giarok) = 2tz cos Gt (), &, enwio (k) = \/m2, 4y (k) + 10K (1.7)
Dy, by w,o(ko, k) = (iko + Cia6(k))* = & 1y (k) (1.8)

1.1.2. Integration of the Matsubara momentum
We first integrate out kg analytically. We use the following identity: for x € R and y > 0,
/Oodk: ! (@ < )~ (1.9)
= —x(z — .
B L

in which x (22 < 3?) € {1,0} is equal to 1 if and only if 22 < y2. Furthermore (see appendix (A1)),
if

th > 3ty (1.10)
then
Cio(k) <& 1ws(k) (1.11)
for all k € B, ¢ € (—m, 7] and W € R, which implies that
~ 3v3 k
My 09 2a(W, ) = W + 33wty sin ¢ — V3 A i o) (1.12)

162" Jg " Eawio(R)



1.1.3. Reduction by symmetries

By using some symmetries of the integrand of (1.12), we can reduce the integration region.
Indeed, my, w4(k) and &, 4, w,o(k) are symmetric under k; — —k; and under rotations of angle

2%. In addition, mtg,l/V,d)(kl,kQ) = mt27W7_¢(k1, —kz) and §t1,t2,W,¢(kla ]{22) = €t1,t2,VV,—d>(k17 —k‘Q).
We can therefore rewrite

Mo, s A(W, ) = W + 338wty sin ¢ — Ay, 1, (W, ¢) + I, 1, (W, —0)) (1.13)
where
93 My, w6 (k)
I W, dk —2722 ~ 1.14
tl,tz( ¢) 87[‘2 B, gtl,tg,W,qb(k) ( )
with
B {(k ko) €B | ky >0, ky < - k:<1k} (1.15)
= , , -, — . .
+ 1, ko 2 1<3 2 73 1
1.1.4. Polar coordinates
Let
2 2w
+
= (ZZ ). 1.16
o (3 3\/§> (116

We note that &, 1, w,¢ has roots if and only if mt2,W,¢(p}) =0 or my, w,e(pp) = 0, located at p;,C
in the former case and at pj, in the latter. If my, w4 vanishes at both pf, which can only occur
if W =0and ¢ =0,n, then &, 1+, w4 vanishes at both pfﬂ. Nevertheless, the integrand in (1.14)
is not singular, since &, 1, w.o(k' + pj) ~ t1|k’|, and the integration over k is 2-dimensional. In
order to make this lack of singularity apparent, it is convenient to switch to polar coordinates
around pj: (k1,ks) = Sfp(cos 0,sin6):

\/‘ th qu(pv 0)
. " 1.17
t1,t2 (W d) / % / ftth,Wd)(pv 0) ( )

in which

My w,e(p, 0) =W = 2tasin gpas(p,0), &, 1we(p,0) := \/mfz,w,qs(ﬂa 0) + 1311Q(p, 0)|?
az(p,0) := —2sin (5(1 + psinf)) (cos (Z(1+ psind)) + cos (%pcos 0)) (1.18)
1Q(p,0)|> =1+ 4cos (5(1+ psinb)) (COS (Z(1+ psinf)) — cos (%pcos 0))

and

(1.19)



1.2. Strategy of the numerical computation

1.2.1. Newton scheme

In order to solve (1.1), we will use a Newton scheme (see section 3.1). More precisely, we fix
¢ and compute W (¢) as the limit of

Wo(¢) := —w3V/3tysin ¢

. MUi,t1,tQ,A(Wn(¢)7 ¢) ]
aWMw,tl,tg,A(Wn(qs)’ ¢)

Wit1(9) = Wa(e)

The first two derivatives of M are

8WMw,t1,t27/\(VV7 ¢) =1- )‘(aWIt1,t2 (W’ ¢) + aWItl,tz (VV, _¢))

with ,
V3 [F R ’ 72,1 (:0)
aWIt,t<vv,¢>=/ de/ dp — L MW,
v 6 -5 0 €t1,t2,W,¢(p7 9) 5?1,t27w7¢(P7 9)
and
8%VMw,t1,t2)\(I/Va QZ)) = _/\(8{%[/It1,t2 (V[/a ¢) + 8%[/11517152 (VV, _¢))
with

5 (RO i 0 2 0
BI%VItl,tQ (VV, ¢) = _é ’ d@/ dp egth’W@(p’ ) 1— = t21W1¢(p ) )
2 0 €t17t27W7¢(’0’ 9) étl,t27m¢(p? 0)

_Tr
6

1.2.2. Integration

In order to compute W,,(¢), we have to evaluate Iy, 1, (W, ¢) and Ow Iy, 1, (W, ¢). The inte-
grations are carried out using Gauss-Legendre quadratures (see section 3.2). In order to use this
method to compute the double integral over 6 and p, we rewrite

/d@/dp F(0,p) = /d9 G(6), G(0):= /dp F(0,p)

for the appropriate F'.

1.3. Usage and examples

We will now describe some basic usage cases of hhtop phase. For a full description of the
options of hhtop, see the man page.

1.3.1. Basic usage
The value of the parameters can be set via the -p flag. Here is an example
hhtop phase -p "omega=1;tl=1.;t2=.1;lambda=.01;sinphi=1;"

Note that ¢ can be set instead of sin ¢, though the result of the computation only depends on
sin ¢. The parameters that are not specified by the -p flag are set to their default value: w =1,
t1=1,1t =01, A=0.01, sing = 1.

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)



1.3.2. Precision of the computation

The precision of the computation can be controlled by three parameters: the precision of the
numbers manipulated by hhtop (set via the -P flag, see section 3.3), the order of the integration,
and the tolerance of the Newton scheme.

1 - Order of the integration. The order of the integration, that is, the value of the
number N introduced in section 3.2, can be specified via the -0 flag. Its default value is 10. The
difference of the value of the integral at different orders is a good measure of the numerical error.
Example:

hhtop phase -0 30

2 - Tolerance of the Newton scheme. The Newton iteration halts when the difference
|Tnt1 — zp| (see section 3.1) is smaller than a number, called the tolerance of the algorithm,
or when the toal number of steps exceeds a given threshold. The tolerance can be set via the
-t flag, and the maximal number of steps via the -N flag. Their default values are 10~!' and
1000000. The tolerance and maximal number of steps are also used in the computation of the
roots {x1,---,xn} of the N-th Legendre polynomial which are used for the numerical integration
(see section 3.2). If the tolerance or the maximal number of steps are too small, and the precision
of multi-precision floats is too low, then the iteration may not converge. Example:

hhtop phase -t 1e-30 -N 2000000 -0 100 -P 256

1.3.3. Using double precision floats instead of multi-precision floats

Using the -D command-line flag, hhtop can be instructed to use long double’s instead of
MPFR floats. Whereas one then loses the ability of adjusting the precision, the computation
time can be drastically reduced. Example:

hhtop -D phase -p "sinphi=1.;"

The precision of long doubles is compiler dependent, see section 3.3.



2. Wave function renormalization

In this section we discuss the computation of the difference and the sum of the (a,a) and
(b, b) wave-function renormalizations.

Warning: This computation is only accurate if ¢ is not too close to 0.

2.1. Description of the computation

2.1.1. Definition of the problem

We wish to compute the following quantities:

21—z = 12287 7 (Ohko S+ ko=0 = OkoS—[ko=0)
21+ 2 = 1287 7 (Oho S+ ko=0 + Ok S—[ko=0)
where
* dpodqo (—ipo — Cp F myp)(—iqo — (g F mq)(—i(po + g0 — ko) — Cr F mp)
St(ko) = [ dpd
sy = fLapaa [ T £2)((ido + Co)? — €2)((i(po + a0 — o) + Cr)? — £3)
in which
B:= {(2;4—/% k2> eR? | |kl < f—\f|k’|}
aq(ki, k2) := 2 cos (sz) (COS (2k1) + cos (?Im)) + %,
ag(ky, k2) := 2sin (ﬁl@) (cos <3/€1> — COoS <\/§k‘2>> ,
2 2 2
m(k) := W — 2tg sin pan (k)
C(k) = 2ty cos da (), E(K) = /m2(k) + 2630n (k)
and
G=Cp), =¢), F=Cpta—1%), &HE=E0), =80, {r=8p+q—0%),
mp =m(p), mg=m(q), mp=m(p+q—pp)
with w € {—1,+1} and
L (2 i 2m
5= (522)

(2.1)

(2.2)



2.1.2. Integration of the Matsubara momentum

We first integrate out py and qo analytically. We recall (see appendix (A1l)) that, provided
t1 = 3o,

(k) < (k).

By closing the integration path over py around the positive-imaginary half-plane (which, by (2.10),
contains two poles), and using the residues theorem, we find that

&p((iqo + Cg)? = &) ((i(q0 — ko) — G + Cr — &) — &F)

(i(go — ko) — G + Cp + &F F myp) (—igo — G F mg)(EF F mF)>
((=i(qo — ko) +¢p — Cr — &r)? — E2)((iqo + Cg)? — £2)Er

St (ko) = /B dpdgq / " o ((fp F 1my)(~igy — Gy F mq) (~i(go — ko) + G = G + & F mop)

_l’_

We then close the integration path over gg around the positive-imaginary half-plane for the first
term, and the negative imaginary half-plane for the second, and find

1 (&p F myp) (&g F my)(iko + Z + & + & F mr)
Sx(ko) = /dedq ( Etyl(iko + 2+ 6 16,7 — €2)
(&g £ my)(Ep Fmp)(iko + Z — & — Ep £my)
quF((ikO +Z— éq - SF)2 - f%)
(& Tm)(Er Tmp)(iko+Z + & —éF imq>)
fng((ikO +Z+ gp - fF)2 - 63)

—+

with
Z = Cp+§q_CF'

The sum of the three terms in the right side of (2.12) yields

_ 1 (gpgng - (fpmq + fqmp)mF + mpmqu)(iko +7)
(i) = [ v ( Seer (iRt 2 — (6t & + &)%)

+ (gp + gq + gF)(mpgng + fpmng - gpgqmF - mpmqmF)> ‘
épgng((ikO + Z)2 - (gp =+ fq + §F)2)
Therefore,
2T (fp"'fq"‘fF)(%‘*‘%}_%_%)Z
Zl‘z2‘64w4/g ”( (2% = (& + & + €07 '
. (1- Zpme — mame | memle) (72 4 (6, + £+ €)%)
21+ 29 = T84 /dedq (Z2 — (& + &4+ €r)?)?

2.1.3. Singularities of the integrand

In order to compute the integrals in (2.15) numerically, we will use Gauss quadratures, which
are only accurate if the integrands are smooth (i.e. if high order derivatives of the integrand are
bounded). In this case, the integrand has singularities, indeed

e 1 and ( vanish at pJIE and pp, and if W = —w3v/3ty sin ¢, then m vanishes at PE,

o if W = —w3v/3tysin ¢, then the second derivative of & diverges at P

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)



The asymptotics near the singularities are
3
V2ten (v + K) = Stk + 4 O(I¥'?)
C(pe+ k) = tacos ¢ O(|K')?) (2.16)
m(p% + k') — (W — w3/3tasin ¢) = tasing O(|K'|?)

which implies that, if W = —w3v/3tasing, p = p% +p/, ¢ = p% + ¢ and k = p%, then

3
§p+&+EF= gtl(!p’l +1d[+ 10"+ ')A+ O(p']) + O(|d])),

717:0/ %:Ol @:O/ /'
fp (12']), 3 (4D, & (1" +4'l)

In addition, the O(-) factors in (2.17) are analytic functions of [p’|, |¢’| and |p’ + ¢|. Note that,
since |- | is not an analytic function (its second derivative diverges at 0), the O(-) factors are not
analytic functions of p/, ¢’ or p’ + ¢/. Therefore, if W = —w3+/3t2 sin ¢, then

27 (§p+€q+§F)(%+%_%_%)Z
64! (2% - (&p+ &+ £r)?)?

(2.17)
Z=0(P'*) +0(d ) + Ol +d'P),

T (p.g): (2.18)

e is smooth as long as p # p% and ¢ # p% and p + q # 2p%,

e is bounded for all p, g,

e its derivatives diverge if p = p% or ¢ = p% or p + q = 2p%.
Similarly, if W = —w3+/3ty sin ¢, then

o (15 ) (2 G+ 6 6)
I+ (p7 q) :

"~ 12874 (22 — (&) + &4+ EF)2)? (2.19)

is smooth as long as p # p% and ¢ # p% and p + q # 2p%,

diverges if p = p% and ¢ = p% (it would remain bounded if it were multiplied by [p — p%| -

is bounded for all (p,q) # (p%, P5),
e its derivatives diverge if p = p% or ¢ = p% or p + q = 2p%.

In the next section, we will regularize these singularities by changing performing an appropriate
change of variables.

2.1.4. Sunrise coordinates

In this section, we will show how to regularize the singularities mentioned in the previous
section. We assume throughout this section that W = —w3+/3t3sin ¢ (if this is not the case, then
there are no singularities).

Warning: As it is set up here, this computation is only accurate if ¢ is not too close to
0 (see the remark on p. 9).

While Z_ and [p — p%||qg — p%|Z5+ are singular functions of p and ¢ (because of the divergence
of the second derivative of [p — p%|), they can be re-expressed as smooth functions of p, g,



p = |p—p%, r=|¢g—p% and v := |p + ¢ — 2p%|. We will, therefore, change to the sunrise
coordinates, described in appendix A2, which, by lemma A2.1, regularize the singularities of Z_
and Z,. However, the sunrise coordinates are only defined for rotationally symmetric integration
regions, so we will have to split the integration regions, and note that in the regions where we
cannot change to sunrise coordinates, it suffices to use polar coordinates.

Let
By :=BnN{(ki, k) € B| £ky>0}

and o :

B = {pE+ ¥, K|<R), Ri=—"-, B .=p.\BY

(ks <Ry, R L\ BY

(Bf) is the largest disk that is included in By ). As is discussed below (see the remark on p. 11),
it is inconvenient to sharply split the integral, so we will use a smooth cut-off function instead:
we define, for 7 € (0,1), x- : [0,00) — [0, 1]:

1—7 1—7 1—7 lf HANS (T7 1)
XT(Z‘) = 6_ﬁ+6 T—=z (1— e_zf‘r)

0 if x €[0,7]U[1,00)

1—7
e I—z
(

which is equal to 1 if z < 7, and to 0 if z > 1, and is C*°. In addition, one can prove that y, is
a class-2 Gevrey function, that is, 3Cy, C' > 0 such that for all € [0,00) and n € N,

d"xr

(!
s < CoC™(n))2.

sup

Note that Cy and C depend on 7, and diverge as 7 — 1. We will fix 7 = % in the following.

Remark: By introducing such a cutoff function, the integrands will no longer be a analytic,
but class-2 Gevrey functions. By lemma A3.1 (see appendix A3), the error of the numerical
integration scheme nevertheless decays as an exponential in v/ N where N denotes the order of
the quadrature.

Let, for p € B
10w =y () 00 =1 100

where the choice 7 = % is arbitrary (any other value would do, as long as it is not too close to 0
or 1), we recall that R := \/g’ and | - |g denotes the periodic Euclidian norm on B:

k| := min{|k +m Gy +n2G_|, (n1,m2) € Z°}, Gx:= (%, 775)-

We then split
0% 20 = AT) 4 24T) 1 AT

where

A:':: :/B(F) /(F) dqu) f ( )I:F(p7 )

L@/Wmﬂ@@mkwam@

/dp/dqf ) (q) Z (. q)

in which we used the symmetry Z+(p,q) = Z+(q,p). We will change to sunrise coordinates in
Af r and to polar coordinates in Ag r and Ag g.

() .
APTF.

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)



1 - The integrand of Ag}m has the same singularities as Z+, which we regularize by changing

to sunrise coordinates. Since B(F)
In order to get rid of factors of w, we first rescale p and ¢ by R =

is a disk, these coordinates are Well defined (see lemma A2.1).

3\[, and find

2/ dp/% d9/ﬂd¢/01 dz (o)1) (0) 2 (0) ST (0)

ith o = (p, 0,7, z),
with 0 = (2,6,9,7) 7(1 4 7 cos(2¢))

(14 cosp)\/1 + 7 cos2 )’

YJ (o) = 4p°

where 7 is defined in (A2.12),

Sf00) =1 (0), =f£550) =1 (or),

X1
2

[N

| (56 + B, + Dep) (g2 + T2 — Fge - Zpptmaime vz

X8q  XEr NI I
EZ_ = —
7 s (S22 = (D& + 3, + BEp)?)2
Zmp S Sme% Sm,% 9 )
ST, (0) = (1 R R ) (527 4 (56 + 56 + 56)?)
' 216 (X222 — (3& + X& + XEF)?)?
in which

XEp = f_(\/g—{— pcost w+ wpsin@) , Xy = f_(\/§—|— prcos(0 + ¢),w + wprsin(f + cp)) ,
¢ =& (V3 + plcosf + 7 cos(0 + ¢)),w + wp(sin() + 7sin( + ¢))) ,

where ¢ is defined in (A2.13), and

(F) = 2ts cos dar(F), m(R) = W — 2ty sin an(F),
i) (cos (k) + cos (3;@,)) vy
(. o) = 2sim (7o) (Cos (\%kl) — cos ( )

Smy i=m (V34 peost,w +wpsinb),  Tmg :=m (V3 + pircos(d + ¢),w + wprsin(f + ¢)),

E(k): \/m2 )+ 2t2a4 (k),

YSmp:i=m (\f + p(cos O + 7 cos(0 + ¢)),w + wp(sin(f) + 7sin(0 + go))) ,

and
N7 1= %C, + N — S
with
X = f(\/g + pcosb,w+ wpsin@) DY f(\/§+ prcos(0 + @), w + wprsin(f + cp)) ,

¢ = C (V3 + plcosb + Feos(0 + ¢)), w + wp(sin(h) + 7sin(6 + ¢))) .

Let us now check that the functions ¥ J¥Z+ and X f,,; are smooth. This is almost a direct
consequence of lemma A2.1 and (2.17), if not for the fact that the sunrise coordinates ignore the
periodic nature of the Brillouin zone B. If p + g — p% were equal to p% + (n1G4 + noG_) with
Gy = (23, :l:%) and (n1,n2) € Z?\ {(0,0)} then Z+(p, q) would have a singularity that is not
regularized by the sunrise coordinates. However, one readily checks that this cannot happen when

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)



F)

p and ¢ are in Bfu . All in all, ¥J¥7~ is an analytic function on the closure of the integration
domain, and X fff;) is a class-2 Gevrey function.

Remark: In the discussion above, we assumed that Z(p, ¢) is not singular at p*, which is only
true if ¢ # 0. If ¢ is small, then the derivatives of Z(p,q) may be very large if one of p, ¢ or
P+ q—p% is close to pr”. When p and ¢ are in BL(UF), P+ q — p% may be arbitrarily close to p,*,
which means that ¢ must be sufficiently far from 0 for the accuracy of the computation described
above to be good.

’7T

Finally, using the
AT = / d / d0/

FF = 14 -
z _

2 - The integrand of Agﬂ)m is only singular if ¢ = p% or p + ¢ — p% = p%, because

rotation symmetry, we rewrite

d / a2 Sf(0) S5 (0)2 (0) 214 (o).

us
2

lp — p%IB > £ We regularize these singularities by switching to polar coordinates corresponding
to ¢ and p+ q — p%, which we denote by (r,0,p,¢): if p+q—p% € By,

2w 2
= p% +w——p(cosh,sinb), +q—p% =p% +v——=r(cos p,sin
q=pp 3\/30( ), p+a—pp=rpp W (cos p,sin )

in terms of which

RF—VZi/%dG/%dw/ C“"/R(wdpprnfm( ML) (@)1 ()

with @ = (1,0, p, ¢),

If (@) = X1 (l(pcosp —rcost, v—w+vpsing —wrsinb)|r), T (w):= X%(r)
where
[Flz = min { | + n1(V3, 1) + na(V3, ~1)|, (n1,n2) € 22},
iy L e e e
~(@) = ﬁ (122 — (TI&, + TI&, + 11£p)2)2
IIm,I1 IImgI1 IIm,,I1
(e (1 Spepmr — Spapme 4 Spet ) (1122 4 (116, + 11€, + 11€7)%)
w) = —
+ 216 (TZ2 — (pr + 11§ + [¢F)?)?
in which

IIg, := E(\/g—krcos@,w—kwrsin@), [Ip := 5_(\/§+pcos<p,1/—|—upsingp),
I, =& (V3 —rcost + peosp),v —wrsinf + vpsingp)
where ¢ is defined in (2.33),
IImg :=m (\/g—i-rcosﬂ,w—i-wrsinG), IImp:=m (\/§+pcosgo,u+l/psin<p),
IIm,, ::m(\/3—rcos@+pcosgp),u—wrsin&—i—ypsingo) ,

where m is defined in (2.33),
Z :=T1I¢, + II¢, — Ik

10

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)



with
II¢, := C_(\/§+rcost9,w+wrsin9), I[I¢p := f(\/§+pcos<p,y+ypsingo) ,
I1¢, == E(ﬁ—rcos@—i—pcosgo),y—wrsinﬁ—i—ypsingo)

where ( is defined in (2.33), and

1 T T
il 07
cos(f — %) oe [ 6’ 2}
1 T T
ROy = — ifee[,}
() cos(f — 2) 2°6
1 Tm 11w
- ifhe |—,—]|.
[ cos(6+ %) ' [6’ 6]

Note that R(0) is smooth by parts, so, in order to keep the accuracy of the computation high,
we must split the integral over ¢:

27 1 R(p)
ATp =3y [ as / o [ [T dp prt 0@ @ ()
v=+ 6

In which we used the symmetry under —” rotations of p and gq.

By (2.17) and the fact that [p—p%|s > g on the support of J"L(JR)7 prIlZs is an analytic function
on the closure of the integration domain, and II ngF) and I1 f“(,R) are class-2 Gevrey functions.

Remark: In order to regularize the singularity at p + ¢ — p% = p%, we had to change variables
to (¢,p + q — p%). If, instead of the smooth cutoff function f,,, we had used a step function, the
integration region for p + ¢ — p% would have been B minus a disk centered around ¢ of radius
R. This creates trouble, since the parametrization of this disk is singular when p% tends to the
boundary of the disk. The reason for which we have used a smooth cutoff function is to avoid
this problem.

3 - The integrand of Agfl){ is only singular if p + ¢ — p% = p%, because |p — p%|s > % and
lg — P58 > %. We regularize this singularity by switching to polar coordinates corresponding to
q and p + ¢ — p%, which we denote by (7,6, p,p): if ¢ € B, and p + ¢ — p% € B, then we define

2 2
— : w o _ V :
=pr+n——=r(cosf,sinb), +q— = p% + v——=p(cos p, sin

in terms of which

2 2 R(0) R(
aih= X [Tao [Tae [ [ ap sz @t

n,v==%
with @ = (r,0, p, ¢),

= (R)( ) =

—Jw,l

X1 (|(pcos —rcosh, v—n+vpsing —nrsind)|r),

1
2

fRQ)(w) =x1 (|(rcosf, n—w+ nrsind)|r)

1
2

where

Ik|r := min {|;5 L ni(V3,1) + n2(V3, —1)|, (n1,n2) € 22} ,
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(2.48)

(2.49)
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SRR NG Rl 0] C ke el e 7 i
108 (E22 = (B& + 2§ + EEr)?)?

EmpEm ZmgEm EmpEm, =72 = = = 2

T, () = (1 - Teger — Zeder + espe) (529 + (36, + 26, + 560)?)
¥ 210 (B2 — (56 + B¢, + Zer))?

in which
HEy = g(\/§+rcos0,n+nrsin6) , =p = g(\/§+pcos<p,u+ VpSil’l(p) ,

B = f_(\/g— rcosf + pcosp),v+w—n—nrsinf + ypsingo) )
where ¢ is defined in (2.33),

—_
—

Emy ::m(\/§+rcos0,n+m“sin9), Zmp :zﬂ(ﬁ—i—pcosgp,u—}—upsingp),

Emy, :=m (\/3— rcosf + pcosp),v+w—n—nrsinf + Vpsingo) ,
where m is defined in (2.33),
EZ =20 +E( — =(CF
with _ _
B¢ =¢ (\/g—i—rcose,n—i—nrsinG) , =2Cp:=( (\/§+pcos<p,1/ + upsincp) ,
2 = E(\/g— rcosf + pcosp),v+w—n—nrsinf + Vpsingp)
where ( is defined in (2.33), and R is defined in (2.47). Here, again, since R(f) is only smooth
by parts, we must split the integral over 6 and ¢:

) (4a+3)F R(9) R(p) _(R) _ (R) _
AT =3 % / Y [ ap [ [T ap W@ @)
6

n,v==+ a=0,1,2 a= 1)7r

In which we used the symmetry under 2—” rotations of p and gq.

By (2.17) and the fact that |p — p}|5 > % and |¢ — p%ls > % on the support Fé)féR)’ r=7+

is an analytic function on the closure of the integration domain, and = f(gRl) and Zf 5 are class-2
Gevrey functions.

2.2. Strategy of the numerical computation

The integrations are carried out using Gauss-Legendre quadratures (see section 3.2).

2.3. Usage and examples

We will now describe some basic usage cases of hhtop z1-z2. For a full description of the
options of hhtop, see the man page.

2.3.1. Basic usage
The value of the parameters can be set via the -p flag. Here is an example

hhtop z1-z2 -p "omega=1;tl=1.;t2=.1;phi=1;"
hhtop z1+z2 -p "omega=1;tl=1.;t2=.1;phi=1;"

The parameters that are not specified by the -p flag are set to their default value: w =1, t; =1,
ts=0.1, ¢ =%, W = w3V/3tysin ¢.
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2.3.2. Precision of the computation

The precision of the computation can be controlled by three parameters: the precision of the
numbers manipulated by hhtop (set via the -P flag, see section 3.3), the order of the integration,
and the tolerance of the computation of abcissa and weights.

1 - Order of the integration. The order of the integration, that is, the value of the
number N introduced in section 3.2, can be specified via the -0 flag. Its default value is 10. The
difference of the value of the integral at different orders is a good measure of the numerical error.
Example:

hhtop z1-z2 -0 30
hhtop z1+z2 -0 30

2 - Tolerance of the abcissa and weights. A Newton scheme is used to compute the
abcissa and weights of the Gauss-Legendre integration. The scheme halts when the difference
|Zn+1 — Tn| (see section 3.1) is smaller than a number, called the tolerance of the algorithm, or
when the toal number of steps exceeds a given threshold. The tolerance can be set via the -t flag,
and the maximal number of steps via the -N flag. Their default values are 10~ and 1000000. If
the tolerance or the maximal number of steps are too small, and the precision of multi-precision
floats is too low, then the iteration may not converge. Example:

hhtop z1-z2 -t 1e-30 -N 2000000 -0 100 -P 256
hhtop z1+z2 -t 1e-30 -N 2000000 -0 100 -P 256

2.3.3. Using double precision floats instead of multi-precision floats

Using the -D command-line flag, hhtop can be instructed to use long double’s instead of
MPEFR floats. Whereas one then loses the ability of adjusting the precision, the computation
time can be drastically reduced. Example:

hhtop -D z1-z2 -p "sinphi=1.;"
hhtop -D z1+z2 -p "sinphi=1.;"

The precision of long doubles is compiler dependent, see section 3.3.
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3. Algorithms

In this section, we describe the algorithms used by hhtop. Their implementation is provided
by the libinum library.

3.1. Newton scheme

The Newton algorithm is used to compute roots: given a real function f and an initial guess
xo for the root, the Newton scheme produces a sequence (zy,):

T T e F ()

which, provided the sequence converges, it tends to a solution of f(x) = 0, with a quadratic rate
of convergence

|$n+1 - xn| < cn‘xn - xn—1’2
where

sup |07 f ()|

1ze [Tn+1,2n]

2 inf  |0.f(z)|

TE(Tn41,%n]

Cp =

3.2. Gauss-Legendre integration

The Gauss-Legendre method allows us to compute

IRaE

for f:]—1,1] — R. Having fixed an order N € N\ {0}, let {z1,---,zx} denote the set of roots
of the N-th Legendre polynomial Py,and let

2
(1= a7) Py (i)

w; =

for i € {1,---, N}. One can show that, if f is a polynomial of order < 2N — 1, then

1 N
[ e @)=Y wis(e).
=1

-1

If f is an analytic function, then one can show that the error decays exponentially as N — oo.
However, in the computation of z; — z3 (see section 2), we use Gauss-Legendre quadratures to
integrate a class-2 Gevrey function, so we will need to generalize this result. Let us first define
class-s Gevrey functions on [—1,1], as C* functions, for which there exist Cy, C' > 0, such that

Vn € N,
d"f(z)

dzx™

< CoC™(n))?.

sup
z€[—1,1]

Note that the set of analytic functions on [—1,1] is equal to the set of class-1 Gevrey functions
n [—1,1]. We assume that s € N\ {0}.

The basic strategy to estimate the error
1 N
[ e @) = 3wt
-1 i=1
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is to approximate f using Chebyshev polynomials, bound the error of this approximation for
Gevrey functions, and use an estimate of the error when f is a Chebyshev polynomial. This is
done in detail in appendix A3, and we find (see lemma A3.1)

o=

En(f) < cocd H2N) e e N5 g1 (3.9)

3.3. Precision

The numerical values manipulated by hhtop are represented as multi-precision floats (using
the GNU MPFR library). The number of bits allocated to each number, that is, the number of
digits used in the computation, can be specified using the -P flag. The default precision is 53
bits. Example:

hhtop phase -P 128
This behavior can be changed using the -D flag, in which case the numerical values are

represented as long double, which have a fixed precision, but yield faster computation times.
Example:

hhtop -D phase

The precision of long double’s is compiler-dependent, and can be checked using the -Vv flag:
hhtop -Vv

Using the GNU GCC compiler, version 5.3.0, on the x86-64 architecture, the precision of long
double’s is 64.
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Appendices
Al. Proof of (1.11)

In this appendix, we show that (1.10) holds, then (1.11) does as well. To alleviate the
notation, we will drop the 4, 4, w indices as well as the ‘(k)’. We have

€2 — % =m? + 3|9 — 4t3 cos® pai (A1.1)
which, using |22 = 20y, becomes

€2 — 2 =m? + 201 (1 — 2t30). (A1.2)

Furthermore, 0 < oy < § (both 0 and  are reached, respectively at 0 and pp := (2F, 2Z)). This

3733
implies that &2 > (2.

A2. Sunrise coordinates

In this appendix, we discuss the sunrise coordinates, which are used to compute sunrise
Feynman diagrams. Such diagrams give rise to an integral of the form

/dpdq F(p,q,|pl,lql, lp + ql) (A2.1)

where prF(p,q, p,r,7) is an analytic function of p, ¢, p,  and =, and

|(p1, p2)| == \/p] + 3. (A2.2)

However, since |p|, |q| and |p + ¢| are not analytic, the derivatives of F(p,q,|p|, |q|,|p + q|) are,
typically, unbounded, which can cause the error in the numerical evaluation of the integral un-
controllably large. In order to avoid this problem, we introduce coordinates, (p, 0,1, z), called
sunrise coordinated, which are such that p, ¢, |p|, |ql, |[p+ 4|, as well as the Jacobian of the change
of variables, are analytic functions of (p, 6,1, z). Expressed using the sunrise coordinates, the
integral of F' can be computed with good numerical accuracy.

Remark: Note that if, instead of the sunrise coordinates, one used the (simpler) polar coordinates
p = p(cosB,sin @) and g = r(cos p,sin p), then |p + q| = \/p? + 72 + 2pr cos(f — ¢), which has a
divergent second derivative at (p,6) = (r, —¢). Polar coordinates, therefore, do not do the trick.

Remark: The sunrise coordinates are introduced in the following lemma, which is only stated
for the case |[p| > |g|. The integration over the regime |q| < |p| can be performed by exchanging
p and q.

\ Lemma A2.1
Let Br := {p € R?, |p| < R}. We define the map S

S: {(p,q) € B%, Ip|>lql} — (0,R) x[0,27) x [-5,5] x (0,1)
(A2.3)
(p,@) — (p,0,9,2)
with
p:=|p| € (0,R), (A2.4)
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0 € [0,27) is the unique solution of
p = p(cosB,sinh),

if ¢ denotes the angle between p and ¢, then ¢ € [-7, §] is the unique solution of

cos ) = \/]p—{— al —Ipl + ‘Q|, sign(vy) = sign(sin ),

and
1— /11— dsin?y
=1- € (0,1).
: 1 — cos® (0.1)
The map S is invertible, its inverse is analytic, and is such that, if (p,q) = S~*(p, 6,7, z), then
Ip|, |¢| and |p + ¢| are analytic functions of (p, 8,1, z). Furthermore, the Jacobian

o(p1, P2, q1, qg)) ’
J = det e r—
‘ < 8(,0a97¢72)

is an analytic function of (p,,1,2). In addition, S7%, |p|, |¢|, |p + ¢| and J, as functions of

(p,0,v, z), can be continued analytically to [0, R] x [0,27) x [-F, 5] x [0, 1]. Explicitly,

p1=pcost, py=psinf, q =prcos(d+ ), ga=prsin(d+ ),

ol =p, lal=pF, |p+q|=p1+7cos(2¢))

and o F(147cos(29))
P i+ cosd)/1+rco ¢
with ]
7= (1—2)(1+2h(y)), () = @ZZZZ ti=1—(1—2)(1 - cosv),
and

cos p := cos(2¢) — gsin2(2¢), sin ¢ := tsin(2¢) /1 4 7 cos? 1.

Proof: In order to prove the lemma, we will compose several changes of coordinates. The
sunrise coordinates described above are obtained by combining these intermediate changes of
variables.

1 - The first, consists in changing p to polar coordinates, which yields (A2.4), (A2.5) and
the first two equations of (A2.9), and contributes a factor p to the Jacobian:

R 27
/dp/ qu:/ dp/ d@/ dq p F.
Br B 0 0 B,

2 -  We then change variables to

|pl

<p797 QI7Q2) — (107 H,T, 7)

with

ri=1lql, y:=Ip+tq = \/p2+r2+2p(q1cost9+qzsin6)
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so that

R 2 p p+r ~y
/dp/ qu:/ dp/ d9/ dr/ dy —— F
Br B 0 0 0 p—r | sin |

where ¢ is the angle between p and ¢:

Ip|

2_ 2 .2
—p° — 1
cosgpzi’7 p|or , |sing0|:\/1—c082g0:—\/4r2p2—(72—r2—p2)2
2rp 2rp
which we rewrite as
) 1
|singp| = %\/(pﬂ"+7)(p—7“+7)(—p+7“+7)(p+7“—'V)-
3 - We then adimensionalize r and -, that is, we change to 7,7 in such a way that

7,5 € (0,1):
r o r ;y.:ry_p+r

2r

in terms of which
R o 1 1 3= D
2 1-— 2
/ dp/ quz/ dp/ de/ df/df‘y pr(l =7 +2m) L
Br By 0 0 0 0 | sin |

|sing| =2/5(1 =) (1 — 7 + ) (L + 7).

and

4 - At this point, the singularities have all been shifted to |sin¢|: p, ¢, |p|, |¢| and |p+q| are
analytic functions of p, 7, 7, cos 8, sin 6, cos ¢ and sin ¢, and the only one of these that is singular

is sin ¢, because of the square root in (A2.22). We first note that /1 + 7y > 1, so that factor is

not singular. In order to regularize the divergence in the other terms, we change variables to

costp := /7, siny :=sign(sinp)y/1 -7, t:=+/1-7(1-7%)

after which
L
Br B

5 - Finally, we adimensionalize ¢:

Ip| cos.2 (0

sin® ¢ \/ 14+

so that

2
/dp dq F = /dp/ d9/ dw/dz
Br By —3

4p°

1 —2)(1 4 zh(¥)) (1 + (1 — 2)(1 + zh(v)))(2cos? ¢ — 1))
1+cosw V14 (1= 2)(1+ 2h(3)) cos? 4

27 3(1—t2) <1+ (- )(ZCOS 1/1—1))
dq F = / dp/ d9/ dt 4p F.
5 cos

6 - Equations (A2.9) through (A2.13) follow from (A2.26). The analyticity of p, g, |p|, |q|,

|p + ¢| and J is a simple comsequence of (A2.9), (A2.10) and (A2.11).
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A3. Estimate of the error of Gauss-Legendre quadratures for
Gevrey functions
In this appendix, we compute the error of Gauss-Legendre quadratures when used to integrate

class-s Gevrey functions. A class-s Gevrey function on [—1,1] is a C* function that satisfies,
Vn € N,

d’n
sup fix) < CoC™(nl)®.
z€[-1,1] dx
\ Lemma A3.1 \

Let f be a class-s Gevrey function with s € N\ {0}. There exist cy,c1,b > 0, which are
independent of s, and Ny > 0, which is independent of s and f, such that, if N > Ny, then

=

»

En(f) < cocd H(2N) 5 b= g1
In particular, if f is analytic (i.e. s = 1), then

En(f) < coe 2N,

Proof:

1 - We approximate f by Chebyshev polynomials:
Co >
f@) =2+ 3 eTy)
=1

where T} is the j-th Chebyshev polynomial:

2 T
Tj(z) := cos(j arccos(z)), c¢j:= / df f(cosf)cos(j6).

T Jo
Note that (A3.4) is nothing other than the Fourier cosine series expansion of F'(6) := f(cos(#)),
which is an even, periodic, class-s Gevrey function on [—7, 7], whose j-th Fourier coefficient
for j € Z is equal to %Cljl' Furthermore, using a well-known estimate of the decay of Fourier
coefficients of class-s Gevrey functions (see e.g. [Ta87, Theorem 3.3]), there exists by, b > 0 such
that

1
C]' < boe_b]S .

2 - Furthermore, since order-N Gauss-Legendre quadratures are exact on polynomials of
order < 2N — 1, we have, formally,

En(f) = Z c; En(Tj).

j=2N

As was proved by A.R. Curtis and P. Rabinowitz [CP72], if N is large enough, then

En(Tj) <
which, by (A3.6), implies that
oo o
En(f)<m ) cj<mhy Y e
j=2N j=2N

(A3.1)

(A3.2)

(A3.3)

(A3.4)

(A3.5)

(A3.6)

(A3.7)

(A3.8)

(A3.9)



1
s

Furthermore, if v, := [(2N)
s-th root, then

i e*bj% < i e*bj% < i (ks - (k— 1)3)efbk <s i ksflefbk‘

]=2N j:llls\,’s k:VN,s k:VN,s

We then estimate

|® denotes the largest integer that is < 2N and has an integer

- 1, —bk ! - bk 1 ol gmbwa
ke = ——— (s =)
kZ ¢ d(—b)s~1 k,z ‘ (e~ 1) (VN’S 1o eb> 1—eb
=VN,s =VN,s

which concludes the proof of the lemma.
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