using QuadGK using FastGaussQuadrature using SpecialFunctions using FFTW # numerical values hbar=6.58e-16 # eV.s m=9.11e-31 # kg Un=9 # eV En=parse(Float64,ARGS[1])*1e9 # V/m Kn=4.5 # eV # dimensionless quantities U=1 E=En*hbar/(Un^1.5*m^0.5)*sqrt(1.60e-19) k0=sqrt(2*Kn/Un) # cutoffs p_cutoff=20*k0 p_npoints=4096 # airy approximations airy_threshold=30 airy_order=5 # order for Gauss-Legendre quadrature order=10 # compute at these points X=[(2*U-k0*k0)/(2*E),10*(2*U-k0*k0)/(2*E)] include("FN_base.jl") # compute the weights and abcissa for gauss-legendre quadratures gl_data=gausslegendre(order) ps=Array{Array{Array{Complex{Float64}}}}(undef,length(X)) dps=Array{Array{Array{Complex{Float64}}}}(undef,length(X)) intJ=Array{Array{Complex{Float64}}}(undef,length(X)) for i in 1:length(X) # wave function ps[i]=psi(X[i],k0,E,U,p_npoints,p_cutoff) dps[i]=dpsi(X[i],k0,E,U,p_npoints,p_cutoff) # integrated current intJ[i]=zeros(Complex{Float64},p_npoints) for l in 1:order eval=current(X[i],k0/2*(gl_data[1][l]+1),E,U,p_npoints,p_cutoff) for j in 1:length(eval) intJ[i][j]=intJ[i][j]+k0/2*gl_data[2][l]*eval[j] end end end for j in 1:p_npoints for i in 1:length(X) print(real(ps[i][1][j])*hbar/Un*1e15,' ',abs(ps[i][2][j])^2,' ',J(ps[i][2][j],dps[i][2][j])/(2*k0),' ',real(intJ[i][j]/k0^2),' ') end print('\n') end